Pre-admissions program to Automatic Control

1. General concepts

• Basic definitions of control
• History of control
• Importance of control and its applications

2. Laplace transform

• Definition of the transform
• Properties and theorems
• Use of the transform
• Inverse Laplace transform

3. Mathematical modeling of systems

• Models of electrical, mechanical, hydraulic, thermal, and electromechanical systems
• Transfer function
• Block algebra

4. Time response analysis

• Time response of first and second order systems
• Graphical identification of first and second order systems

5. Stability of control systems

• Stability concept
• Stability theorems
• Stability criteria

6. Basic Control Actions: P, I, D, PI, PD, PID

• Definitions
• Classic and industrial PIDs
• Parameter tuning methods
• Comparison of tuning methods

7. Error analysis in basic input and system types

• Definition of system types
• Error definition
• Basic input types
• Steady state error behavior

8. Routh–Hurwitz stability criterion

9. Review of complex variables


10. Root locus

• Definition
• Finding the geometric root locus

11. Bode plot

• Finding the Bode plot

12. Polar diagrams

• Nyquist stability criterion
• Gain and phase margins

13. Compensators

Bibliography:

· K. Ogata, Modern control engineering, Prentice-Hall, 1997.
· G.F. Franklin, J. Powell, A. Emami-Naieni , Feedback control of dynamic systems, Addison-Wesley, 1991.
· B.C. Kuo, Automatic Control Systems, CECSA, 1995.
· R.C. Dorf, Modern Control Systems, Addison-Wesley, 1989.
· J. Distefano , A. Stubberud , J. Williams, Feedback and Control Systems, McGraw-Hill, 1985.
· K. Ogata, System dynamics, Prentice Hall, 1992.
· K. Ogata, Designing linear control systems with Matlab, Prentice Hall, 1994