Sistemas Lineales III (Control Geométrico)

creditosObjetivos:
• Que el alumno aprenda los principios básicos y herramientas del enfoque geométrico en control, y las aplique al análisis y diseño de sistemas lineales multivariables.

Programa del curso

1. Preliminares

1.1 Polinomio mínimo de un vector y de un espacio vectorial
1.2 Descomposición de un espacio vectorial en subespacios invariantes con polinomios
1.3 Congruencia y espacio cociente
1.4 Descomposición de un espacio vectorial en subespacios invariantes cíclicos
1.5 Forma normal de una matriz
1.6 Polinomios invariantes y divisores elementales
1.8 Espacios y operadores

2. Alcanzabilidad y controlabilidad

3. Controlabilidad, retroalimentación y asignación de polos

5. Rechazo de perturbaciones

6. Subespacios de controlabilidad

Bibliografía

• M. Wonham, Linear multivariable control: A geometric approach, Springer-Verlag,
• G. Basile and G. Marro, Controlled and conditioned invariants in linear system theory,
• F.R. Gantmacher, The theory of matrices, Chelsea Publishing Co., 1959.
• I. Gohberg, P. Lancaster, L. Rodman, Invariant subspaces of matrices with applications, John Wiley&Sons, 1986.